THROUGH BOND INTERACTION IN 1,4-DIPOLES Peter Hofmann¹⁾ and Rolf Gleiter²⁾

 Institut für Organische Chemie der Universität Erlangen (Germany) and
 Institut für Organische Chemie der Technischen Hochschule Darmstadt (Germany)

(Received in UK 25 November 1974; accepted for publication 5 December 1974) Recently Huisgen et.al.[1] found that the 1,4 dipoles formed from tetracyanoethylene and enolethers add ethanol stereospecifically in the manner shown below for cis-propenyl-methyl-ether.

Quite the same stereospecifity has been reported for the formation of cyclobutane derivatives in the absence of alcohols [2] and an even higher one for the conversion of these cyclobutanes into the above mentioned acetals [1]. In both reactions the same 1,4-dipolar species with hindered rotation of the carbenium center is involved. This stereospecifity was explained by assuming a U-shaped conformation for the zwitterion, as indicated above. In this conformation a donor-acceptor interaction between the centers 1 and 4 is favoured. We would like to point out that the stereospecifity observed can also be explained by a through bond interaction [3]. Model calculations on tetramethylene [4] and isoelectronic species [5] have shown that the overlap population for the bond C_1-C_2 of the zwitterion hampers free rotation, even in non U-shaped conformations. To check this qualitative reasoning, based on model calculations [4] [5], we have carried out extended Hückel [6] calculations on the 1,4 dipole arising from the addition of dicyanoethylene to hydroxyethylene for different conformations. The overlap populations of the bonds $0-C_1$, C_1-C_2 , C_2-C_3 and C_3-C_4 for the conformations $\frac{1}{2}$ and $\frac{2}{2}$ are shown below.

For the U-shaped zwitterion $\frac{1}{2}$ with both carbenium - and carbanion-orbitals oriented in the same plane and parallel to the C_2-C_3 -bond, our calculations give a level ordering of "S" below "A" [5]. This indicates dominance of through space interaction between the two centers. As anticipated, there is a considerable rotational barrier for rotation of the OH-group to the outside (compare Fig. 1) due to reduction of C_1-C_4 interaction. This is clearly revealed by the decrease of the frontier orbital splitting in Fig. 1. Rotation of the OH-group to the inside (compare Fig. 1) of course is hindered by steric effects.

Further calculations show that conformation $\frac{1}{2}$ seems to be unfavourable with respect to rotation around the central C_2 - C_3 -bond. EH calculations predict that $\frac{2}{2}$ is more stable than the gauche conformations and $\frac{1}{2}$. Going from $\frac{1}{2}$ to $\frac{2}{2}$, through space interaction between the 2p orbitals on C_1 and C_4 vanishes and steric interactions are diminished.

We would like to emphasize here that in those isomers where through space interaction is negligible there still remains a considerable barrier for the rotation around C_1-C_2 due to through bond interaction [2]. The corresponding calculations carried out on $\underline{2}$ show "A" to be below "S". The splitting in energy is again largest in a conformation where the two 2p-orbitals on the centers 1 and 4 are parallel to the $C_2-C_3\sigma$ -bond.

Fig. 1. Orbital energies of HOMO and LUMO of $\frac{1}{2}$ as a function of the dihedral angle between the planes $0-C_1-C_2$ and $C_1-C_2-C_3$.

A comparison of the overlap populations of $\frac{1}{2}$ and $\frac{2}{2}$ shows considerable bond alternation and strengthening of the $C_1 - C_2$ bond in $\frac{2}{2}$ as anticipated from model studies [4] [5].

For the dipoles arising from the formal addition of HNCO and H_2CSO_2 to hydroxyethylene or aminoethylene similar results are obtained. These 1,4-dipoles may be a model for intermediates in cycloaddition reactions discussed recently [7] [8].

In general these calculations suggest that the effect of through bond interaction should not be neglected in discussing cycloaddition reactions with 1,4 dipolar intermediates [9]. We thank the Fonds der Chemischen Industrie for financial support. P. H. is grateful to Prof. R. Hoffmann, Cornell University, for part of coumputer time for the reported calculations.

References and Footnotes

- [1] R. Huisgen, R. Schug and G. Steiner, Angew. Chem. <u>86</u>, 48 (1974);
 Angew. Chem. Internat. Edit. <u>13</u>, 81 (1974).
- [2] Huisgen and G. Steiner, J. Amer. Chem. Soc. 95, 5054, 5055 (1973).
- [3] R. Hoffmann, A. Imamura and W. Hehre, J. Amer. Chem. Soc. <u>90</u>, 1499 (1968); R. Hoffmann, Accounts of Chem. Res. <u>4</u>, 1 (1971); R. Gleiter, Angew. Chem. <u>86</u>, 770 (1974).
- [4] R. Hoffmann, S. Swaminathan, B. G. Odell and R. Gleiter, J. Amer. Chem. Soc. 92, 7091 (1970).
- [5] R. Gleiter, W.-D. Stohrer and R. Hoffmann, Helv. Chim. Acta 55, 893 (1972)
- [6] R. Hoffmann, J. Chem. Phys. <u>39</u>, 1397 (1963) and subsequent papers; R. Hoffmann and W. N. Lipscomb, ibid. <u>36</u>, 2179, 3489 (1962); ibid. <u>37</u>, 2872 (1962). For the geometry the following bond lengths were assumed: C-C = 1,5 Å, C-H = 1.1 Å, C-CN = 1.46 Å, C=N = 1.16 Å, C-O = 1.4 Å, O-H = 0.97 Å. For the angle HCH and $C_1-C_2-C_3 = C_2-C_3-C_4$ we assumed 109° .
- [7] F. Effenberger and O. Gerlach, Chem. Ber. <u>107</u>, 278 (1974) and references therein.
- [8] W. E. Truce and J. F. Rach, J. Org. Chem. <u>39</u>, 1108 (1974) and references therein.
- [9] R. Gompper, Angew. Chem. <u>81</u>, 348 (1969); Angew. Chem. Internat. Edit. <u>8</u>, 312 (1969).